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Abstract (250 words) 

The post-pandemic work landscape demands a paradigm shift in workplace design, prioritizing 

both employee wellbeing and rejuvenation. While a substantial number of remote working 

Americans are refusing to return to the office, studies show that hybrid or remote workers 

experience a higher rate of mental health issues due to constant interruptions at work. Therefore, 

the role of a dedicated workplace becomes more crucial, as it provides a designated space to 

focus and supports a work-life boundary essential for both physical and mental health. This 

paper posits that effective workplace design, particularly through visual elements such as spatial 

forms, materials, and coloros, can improve physiological and psychological responses. These 

design elements influence the long term wellbeing through sensory stimulations and by shaping 

perceptions of space. Although standards such as the WELL standard and LBC 4.0 provide 

design guidelines that promote health, they fall short in quantitatively demonstrating their impact 

on occupants’ wellbeing, as well as being diluted by broader issues just as environmental 

sustainability and building performance. Addressing this gap, our research aims to develop a 

framework using convolutional neural networks (CNNs) trained on images of interior 

environments, as well as human valence and arousal responses. This model will test against the 

evaluation based on electroencephalogram (EEG), electrodermal activities (EDA), and resting 

heart rate (RHR) to quantitatively evaluate how visual design elements influence employee 

wellbeing. This approach promises to inform more effective workplace design that not only 

meets operational and performance needs but also promotes employee wellbeing and facilitates 

rejuvenation. 
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1.      Introduction 

In the aftermath of the COVID-19 pandemic, the traditional workplace has undergone a 

paradigm shift in which remote or hybrid work schedule has become a norm. According to 

WFHResearch, 12.7% and 28.2% of employees work remotely and in hybrid respectively 

(Aksoy et al. 2023). Reli Exchange’s survey highlights that nearly 26% of remote workers resist 

returning to the office, despite potential job loss risks . This shift has stirred debates around 

productivity and mental health impacts. For instance, while the Harvard Business Review 

suggests remote workers enjoy heightened productivity and satisfaction, Stanford SIEPR notes a 

10% productivity drop in fully remote settings due to communication and motivation challenges 

(Barrero et al., 2023). Nonetheless, the reduced costs from space savings and global hiring 

ostensibly compensate for these deficits, suggesting an overall productivity gain. 

However, the mental health implications of prolonged remote work are concerning. Studies by 

Costin et al. reveal an increase in burnout, stress, and emotional exhaustion among remote 

workers, exacerbated by inadequate training and technology adaptation challenges (Costin et al., 

2023). The lack of workplace and social connections, alongside increased job demands and 

insufficient organizational support, further deteriorates mental health and job satisfaction. These 

findings underscore the importance of the physical workplace not just for operational efficiency 

but also as a vital component of employee wellbeing. Amidst this backdrop, the design of the 

workspace has gained unprecedented importance. Current building standards, primarily focused 

on sustainability and environmental impacts, often overlook human health and wellness aspects. 

The WELL Building Standard emerges as a notable exception. Yet, its guidance on promoting 

workplace wellbeing through design remains vague in associating the effects of design aspects. 

For example, the materials chapter includes safety guidelines to reduce human exposure to toxic 

chemicals such as asbestos, mercury, and lead. However, promoting safety of a building is not 

the same as promoting human health, as it does not address how materials impact occupants 

physiological and psychological wellbeing as discovered in studies as Medhat Assem et al. 

(2023), Yin et al. (2019, 2020), and Elbaiuomy et al. (2019). 

This research aims to bridge the gap in understanding how architectural design influences 

employee wellbeing by utilizing artificial intelligence (AI), particularly machine learning (ML) 

to analyze biometric data related to visual stimuli. This innovative approach seeks to establish a 

clear correlation between design elements and wellbeing indicators, moving beyond traditional 

evaluation methods to offer a quantifiable analysis of design impacts. The study’s objectives are 

twofold: to harness AI in identifying specific design elements that not only meet operational 

needs but also support the mental and physical health of occupants, a crucial consideration in the 

post-pandemic era. Through a comprehensive analysis of existing research and digital tools, this 

study aims to influence future design practices significantly, advocating for workspaces that 

nurture occupant wellbeing in every aspect. 

  



 

2. State of the Art 

2.1. Workplace Wellbeing Definition 

The concept of "workplace wellbeing" related to the built environment first emerged in 1911 and 

has grown significantly over the century. Aryanti et al. (2020) explore workplace wellbeing as 

the sense of prosperity employees derive from work, promoting sustainable retention, 

productivity, and psychological health. Litchfield (2021) describes it as the holistic health status 

of employees within a work environment, encompassing physical, mental, and social aspects. 

Myerson et al. (2017) define it as the balance between employees' psychological, physical, and 

social resources and external challenges, ensuring productivity and mental health.  

WELL 2.0 and LBC 4.0 IEQ are pioneering standards that incorporate wellbeing into their 

design guidelines. WELL 2.0 emphasizes spatial geometries for movement, biophilic design 

principles, and materials to enhance wellbeing. LBC 4.0 focuses on spatial design flexibility, 

aesthetically pleasing colors reflecting the local environment, and the environmental impact of 

materials. However, these guidelines are limited in evaluating the effectiveness of proposed 

strategies. 

Synthesizing these findings, workplace wellbeing integrates physical, mental, and social aspects 

influenced by the built environment. In our study, wellbeing is significantly affected by design 

elements such as form, material, and color. These controllable aspects play a crucial role in 

shaping environments that promote positive valence (emotional positivity) and optimal arousal 

(alertness and engagement). Understanding these design aspects aims to create workplaces that 

enhance productivity, satisfaction, and overall mental and physical health. 

2.2. Metrics for Quantifying Wellbeing 

To fill the missing gap, biometric measurements have been utilized to provide a comprehensive 

insight into how architectural designs influence human emotional and physiological states 

through biometric feedback and neural responses. Kim J. and Kim N. (2022) establish how 

design elements affect emotional responses using biometric indicators. A. Mostafavi (2022) 

extends this to virtual environments, enhancing control over experiment variables and 

replicability of findings as shown in Fig.2.1. Sandra G.L. Persiani et al. (2021), contribute by 

detailing real-time physiological impacts of design features, enhancing the temporal resolution of 

data on occupant wellbeing. Sameh Azzay et al. (2021) add depth by focusing on the neural 

impacts of these environments, emphasizing the need for neuro-architectural research to fill 

knowledge gaps. These studies demonstrate design features elicit quantifiable changes in brain 

and physiological functions and underscores the critical role of architectural design in enhancing 

human wellbeing. The common metrics are electroencephalogram (EEG), heart rate variability 

(HRV), and electrodermal activity (EDA). 



 

 

Fig.2.1: Data triangulation between architecture and biometric data (Mostafavi 2022) 

 

2.2.1 Methods for Quantifying Wellbeing (Measuring EEG, HRV, EDA) 

Electroencephalogram (EEG) is an instrumental tool in neurophysiological diagnostics, 

reflecting the electrical activity generated by neural function within the brain (). There are five 

major frequency bandwidths: Delta (δ) at 0.5 – 4 Hz, associated with sleeping and dreaming 

state; Theta (θ) at 4 – 8 Hz, associated with deeply relaxed and meditation state; Alpha (α) at 8 – 

12 Hz, associated reflective and restful state; Beta (β) at 12 – 35 Hz, associated with busy and 

active mind; and Gamma (γ) at 35+ Hz, associated with problem solving and concentration mind 

(Abhang et al. 2016). These bandwidths can be further translated into various psychological 

states based on valence and arousal scale (Shemesh et al. 2022). Among many other EEG 

headsets, this study selects Emotiv Insight 2.0 that offers a wireless, multi-channel device that 

captures real-time brain activity. This device is equipped with five sensors that measure EEG 

data across different channels, facilitating the analysis of emotional and cognitive responses 

through non-invasive methods. Its portability, ease of use, and cost-effectiveness make it an 

excellent tool for both scientific research and consumer applications. It has been validated in 

various studies such as Zabcikova (2019), Partama et al. (2020), and Shemesh et al. (2017, 2021) 

that highlight its reliability and comparative effectiveness to other EEG devices.  



 

Heart Rate Variability (HRV) is a sophisticated metric used to gauge the variation in time 

intervals between consecutive heartbeats, known as inter-beat intervals (IBIs). It considers the 

exact moment-to-moment changes in heartbeats, providing deeper insights into autonomic 

nervous systems (ANS) functions, as well as the ability to respond to stress and environmental 

changes (Arza et al. 2015; Ge et al. 2020). Resting Heart Rate (RHR) is another valuable 

physiological marker for assessing stress level, as stress typically activates the sympathetic 

nervous system, leading to an increased heart rate. Studies like Chalmers et al. (2021) and Altini 

and Plews (2021) have shown individuals under stress exhibit significantly higher RHR 

compared to their baseline level. 

Electrodermal activity (EDA), also known as galvanic skin response (GSR), is a method at 

measuring the electrical conductance of the skin, which varies with its moisture level. This 

physiological phenomenon is primarily used to gauge ANS activity, particularly the sympathetic 

branch that largely controls sweat gland activity. It is extensively used in psychology to study 

emotional responses, particularly because it is directly affected by arousal states which cannot be 

easily masked or controlled voluntarily (Affanni 2020). 

2.2.4. Valence and Arousal Scale 

 

Fig.2.2: Mental state labels on Valence and Arousal Scale (VAS) 

Valence and arousal are two fundamental dimensions used to describe emotional experiences and 

are integral to the psychological assessment of affective states. Valence refers to the pleasantness 

or unpleasantness of an experience, while arousal indicates the degree of activation or excitement 

that the experience generates. This two-dimensional approach as shown in Fig.2.2 is critical in 

fields like psychology, neuroscience, and human-computer interaction to quantify and evaluate 

emotional responses. EEG studies often focus on specific brain regions and frequencies that 

correlate with arousal and valence. For instance, frontal asymmetry in the alpha band is 

commonly linked to valence, whereas changes in the beta and theta bands can indicate variations 

in arousal. This capability of EEG to detect subtle changes in brain activity related to emotional 

states makes it invaluable for research in neuromarketing, psychiatric assessments, and interface 

design, where understanding emotional responses is crucial. For example, in neuromarketing, 

companies analyze consumer reactions to products or advertisements at the neurological level, 

using EEG to gauge emotional responses based on arousal and valence scales. This approach 



 

helps in refining marketing strategies to better align with consumer emotions, enhancing 

engagement and effectiveness. One pivotal study by Schmidt et al. (2001) outlines methods for 

quantifying emotional valence using EEG by examining frontal brain asymmetry, providing a 

foundational approach for subsequent research in this area. Another significant contribution by 

Posner et al. (2005) details the use of EEG to assess both arousal and valence, further cementing 

the importance of these emotional dimensions in psychological and neuroscientific research. 

2.2.4. Visual Perception of Spatial Forms, Materials, and Colors  

This study focuses on “environmental conditions”, specifically the impacts on occupants' 

wellbeing through visual stimuli in relation to spatial geometries, colors, and materials.This is 

because they are few of the most fundamental decisions in design that have proven to be 

effective in shaping occupants’ physiological responses. For instance, curved and symmetrical 

spaces tend to be associated with higher levels of positive emotions and lower arousal, making 

them feel more pleasant and safe. Conversely, sharp-edged and asymmetrical spaces often elicit 

higher arousal and less positive valence, potentially due to their association with discomfort or 

threat (Shemesh et al. 2017, 2021). Natural materials like wood and stone are often associated 

with warmth and comfort, leading to positive valence and a calming effect, reducing arousal 

(Medhat Assem et al. 2023; Yin et al. 2019, 2020). In contrast, materials such as glass and steel 

can evoke feelings of modernity and coldness, potentially increasing arousal due to their 

association with high-tech environments but possibly decreasing positive valence(Medhat Assem 

et al. 2023; Elbaiuomy et al 2019). In relation to colors, studies have shown that bright and 

saturated colors, such as red and yellow, tend to increase arousal and can evoke feelings of 

excitement or urgency. Conversely, cool colors like blue and green are associated with calming 

effects, reducing arousal and promoting relaxation. Warm colors (reds, oranges, and yellows) 

often elicit positive valence in the form of feelings of warmth and comfort, while cool colors can 

either be calming (positive valence) or perceived as cold and distant (negative valence) 

depending on the context. Additionally, colors such as gray or beige are often perceived as 

neutral or dull, leading to lower arousal and neutral or slightly negative valence (Kuller et al. 

2009; Yoon and Wise. 2014; Cha et al. 2020). 

2.3 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically 

designed for processing structured grid data, such as images (LeCun et al. 2015; Alzubaidi et al. 

2021). CNNs have revolutionized computer vision tasks by effectively capturing spatial 

hierarchies in data through convolutional layers (LeCun et al. 2015). These networks are 

particularly powerful for tasks that involve images as they can automatically and adaptively learn 

spatial hierarchies from raw pixel data (Krizhevsky et al. 2017). Key components of CNNs 

include convolutional layers, pooling layers, fully connected layers, and activation functions. 

Convolution layers apply convolution operations to the input data using filters (kernels) to 

extract local features, such as edges, textures, and patterns (Krizhevsky et al. 2017). Pooling 

layers reduce the spatial dimensions of data which helps make the model invariant to small 

translations and reduce computational complexity (Simonyan et al. 2015). Fully connected layers 

perform the final classification or regression tasks (LeCun et al. 2015). Non-linear activation 

functions like ReLU (Rectified Linear Unit) introduce non-linearity into the model, enabling it to 

learn complex patterns (Krizhevsky et al. 2017). CNNs have been widely used in various 



 

domains, demonstrating their versatility and effectiveness. For instance, they are used in image 

classification to identify objects within images and assign them to predefined categories. For 

image segmentation, CNNs divide an image into segments or regions, which is particularly 

useful in image analysis.  

In the context of classifying images of interior environments based on their impacts on 

occupants’ wellbeing, CNNs offer significant potential. By analyzing the visual characteristics of 

interior space, CNNs can predicate valence and arousal responses, which are crucial indicators of 

emotional wellbeing. Therefore, our research focuses on utilizing CNNs to address the gap 

between environment designs and their wellbeing impact, leveraging their capabilities to 

effectively analyze complex data of the interior images. 

  



 

3. Method  

3.1 Framework 

The study employs a mixed-methods research design, integrating both quantitative and 

qualitative approaches to capture a holistic view of workplace wellbeing. It first collects 900 

images of interior environments to create a pilot survey, to collect qualitative insights from 

participants feedback for a dataset to train a CNNs model. Besides, the study photographs actual 

environments and collects participants’ physiological responses in terms of EEG, EDA, and 

RHR. These photographs and  biometric data are later used in testing the performance of the 

CNNs model. Moveover, this study performs a series of regression learning algorithms to 

discover additional insights, such as the relationships between design elements and their 

wellbeing impact to occupants, measured in terms of valence and arousal. This framework, 

shown in Fig.3.1, facilitates  a detailed analysis of biometric data while contextualizing findings 

within the broader workplace environment. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1: Method Flow Chart



 

3.2 Data Collection and Processing 

3.2.1 Pilot Survey and Data Processing 

In the pilot survey, this study has collected 900 images of different interior environments to 

collect human responses. These 900 images are distributed equally under 3 major categories: 

“Form”, “Material”, and “Color”. Each category contains 300 images as shown in Fig.3.2. 

“Form” category contains black and white images of interior spaces to minimize the appearance 

of material texture and color that may distract participants' rating. “Material” category contains 

images of interior spaces that emphasize on material textures. The “Color” category contains 

images that feature the use of 10 colors: “Black”, “Gray” , “White”, “Red”, “Pink”, “Orange”, 

“Yellow”, “Green”, “Blue”, “Purple”. Respondents are asked to imagine those images as their 

work environments, and rate the images accordingly in terms of valence and arousal in a 0 to 10 

scale.  

To train the CNNs model, this study collects survey responses and maps the valence and arousal 

distribution on a 2D Valence-Arousal Scale (VAS) as shown in Fig.3.3. For labels classification, 

the responses at the 25th percentile will be used as the benchmark compared with the labeling 

graph shown in Fig.3.3. For example, the interior environment in the image 1_c_12 has both 

valence and arousal reading at 5 as the benchmark, which is classified as “Neutral”. After that, 

these 900 images will be used as input dataset while their corresponding labels will be used as 

the output dataset. 

 

 

Fig.3.2: Survey Format 



 

 

Fig.3.3: Example: Survey response data visualization  

For further insight extractions, this study first analyzes each image and computes the proportion 

of over 20 features in 3 major categories. “Form” category contains features of “Rectilinear, 

Sharp, Round, Curvy” based on the spatial classification in Shemesh et al. studies (2021). This 

study first utilizes the image segmentation techniques to outline the spatial geometries of the 

captured environments as shown in Fig.3.4.  Then, these images are sent to ChatGPT-4 

developed by OpenAI, an AI model with advanced image analysis features, to analyze the spatial 

geometric proportions between “Form” features. “Material” category contains features of 

“Wood, Masonry, Metal, Glass, Fabric, Biophilic”. Images are also sent to ChatGPT-4 to 

analyze the material proportions of each environment. “Color” category contains features of 

“Black, Gray, White, Red, Pink, Orange, Yellow, Green, Blue, Purple”. This study performs 

color distribution analysis based on HSV color segmentation via “OpenCV”, a library of 

programming functions for computer vision, as shown in Fig.3.5.   

 

Fig.3.4: Geometric Segmentation 



 

 

Fig.3.5: Color Segmentation 

These features computations are later compiled into one dataset as shown in Fig.3.6, and further 

used in a variety of supervised regression analysis such as linear regression, decision tree, and 

random forest, etc. Additionally, these images are also used in unsupervised learning analysis 

using K-means clustering to help further extract correlations between design elements and 

human valence and arousal responses.  

  

Fig.3.6: Example: Feature extraction data visualization 

3.2.2 Biometric Data collection and Data Processing 

 

Fig.3.7: Environmental data and Biometric data collection 



 

To collect the biometric data, this study uses a noninvasive wireless EEG headset called Insight 

2.0 developed by Emotiv to collect  EEG data; and uses a smartwatch called “Fitbit Charge 6” 

developed by Google to collect EDA and RHR data. as shown in Fig.3.8. Following the IRB 

protocol for human subject tests and the reliability of collected data, this study only invites 

people who are at least 21 years old without any health conditions (such as neurological 

disorders or use of psychoactive medication…etc.) that may affect physiological or cognitive 

functioning to be Test Subjects(TSs). After the devices’ calibration, TSs will keep wearing the 

devices until the whole process is over. First, they will select a location to perform daily work 

tasks for at least 10-15 minutes. Then, take 3-5 photos to cover the environment in their visual 

range. Next, they can start by recording their EDA and RHR data as instructed by the 

smartwatch. After 10-15 minutes they will record EDA and RHR data again before moving to a 

new location to continue the next data collection or ending the data collection process.  

To process the EEG data, this study utilizes Emotiv analysis software “EmotivPro”to translate 

the raw EEG data into mental state via performance metrics as shown in Fig.3.8. This study 

primarily focuses on “Engagement(En)”, “Relax(Re)”, and “Stress(St)” indexes as they are 

associated with the label graph as shown in Fig.2.1. RHR and EDA data will be measured by a 

smartwatch called “Fitbit Charge 6” developed by Google. Inc as shown in Fig.3.7. After that, 

EEG, RHR, and EDA will be used to comprehensively compute the labels of the corresponding 

environments captured in the photos, and later be used to test the CNNs performance. 

 

Fig.3.8: Example of EDA, RHR, EEG recording 

 

3.3 Building CNNs model 



 

This study uses the MobileNetV2 (Sandler et al. 2018) CNN model development begins with 

importing libraries including TensorFlow, numpy, pandas, and scikit-learn, along with specific 

modules for image processing and model building. The data is loaded from a CSV file containing 

image IDs and associated features, which is read using pandas. Images are preprocessed to a 

target size of 224x224 pixels to match the input requirements of the MobileNetV2 model. Helper 

functions are used to load and preprocess these images, ensuring they are compatible with the 

model. To address class imbalance, data augmentation techniques, including rotation, zoom, 

width and height shifts, shear, and horizontal flips, are applied using the “ImageDataGenerator”. 

The MobileNetV2 model, pre-trained on the ImageNet dataset, is employed for feature 

extraction. Custom layers are added on top of this base, combining image features with 

additional CSV features. The architecture is defined by flattening the base model’s output, 

concatenating it with CSV inputs, and passing it through dense layers with ReLU activation 

functions, culminating in a softmax output layer for classification. The model is compiled using 

the Adam optimizer and categorical cross-entropy loss function and is then trained using the 

augmentation dataset. The training process is validated through a separate validation set, and the 

model’s performance is evaluated, yielding metrics such as accuracy to gauge its effectiveness in 

classifying images based on their impact on occupants’ wellbeing. 

  



 

4. Result and Discussion  

4.1 CNNs Modeling Result 

After processing the label classification based on the collected survey responses, the 

environments were categorized as follows: 501 as “Neutral,” 114 as “Relax,” 107 as “Negative,” 

95 as “Bored,” 68 as “Flow,” 11 as “Positive,” and 4 as “Stress” (Fig.4.1). To address class 

imbalance, 150 additional images were augmented, focusing on underrepresented classes. The 

dataset was split into 870 training samples and approximately 180 validation samples, following 

an 80/20 train-test split. The model was trained over 10 epochs with a batch size of 32. 

Evaluation on the validation set resulted in an accuracy of 53.33%, while the training accuracy 

reached 99.43% (Fig.4.2), indicating overfitting, where the model fails to generalize unseen data. 

This underperforming issue can be caused by factors such as limited and homogeneous dataset; 

high model complexity; and insufficient data augmentation, given by the sample size of this 

research. The dataset, with only 870 training samples and approximately 180 validation samples, 

might not fully capture the diversity and complexity of interior environments. This limited data 

may lead to overfitting and hinder the model's ability to generalize to new environments. 

Additionally, data augmentation techniques, such as rotation, zoom, and flips, may introduce 

unrealistic variations that do not reflect natural changes in physical spaces, potentially affecting 

the model's learning process. There are several potential steps to improve the CNN models. 

Applying regularization techniques such as introducing dropout layers during the training 

process, or L2 regularization to encourage the model to maintain simpler weights, can reduce the 

risk of overfitting. Also, other model architectures or simplification methods can be explored to 

prevent it from becoming too complex and thus prone to overfitting. Besides, more data to 

enhance the diversity and comprehensiveness of the training set is much needed to improve its 

generalization capability.  

 

 

Fig.4.1: Image class distribution 



 

Fig.4.2: CNN model training and evaluation 

 

4.2 Insights from Regression Models 

The regression model showed suboptimal performance, with almost all models (Fig.4.3) having 

negative R² scores, indicating that they perform worse than a simple mean prediction of the 

target variable. The Ridge Regression model is the only model with a slightly positive R² score 

but is close to zero (0.011312), indicating minimal explanatory power.  The high Mean Squared 

Error (MSE), and Mean Absolute Error (MAE) across all models further highlights the 

significant prediction errors, and low R² suggest that the model does not capture much of the data 

variability and may not fully understand the underlying patterns. Other models such as Lasso 

Regression and ElasticNet showed similar performance to Ridge Regression but with slightly 

lower R² scores. Ensemble methods like Random Forest Regressor and Gradient Boosting 

Regressor provided moderate performance improvements, but their R² scores were still negative. 

CatBoost and LightGBM showed slightly better performance among the boosting algorithms, 

though their R² scores remained negative. These results highlight that significant improvements 

are needed. Several potential steps include data preprocessing such as noise reduction by 

removing irrelevant details from the image of the interior environments that might introduce 

noise; better feature engineering such as contextual features introducing object detection for 

materials and calculating their pixel proportion to the entire image; and deeper hyperparameter 

tuning. However, as the original data are essentially images, which the underlying structure and 

non-linearity issues could be inherently too difficult for regression models to learn the 

association between design elements and their wellbeing impacts.  



 

 

Fig.4.3: Means squared errors of various regression models 

4.3 Clustering and Principal Component Analysis 

To uncover underlying structure and address non-linearity issues, K-means clustering and 

principal component analysis (PCA) were performed. Seventeen clusters were suggested based 

on the elbow method (Fig.4.4), and “Cluster 14” was selected as an example for PCA shown in 

the correlation matrix (Fig.4.5 and Fig.4.6). The feature extraction methods might not fully 

capture all relevant aspects of interior design elements. While effective for general image 

features, they may miss subtle, domain-specific nuances crucial for understanding the impact of 

interior environments on wellbeing. Advanced feature extraction techniques tailored to interior 

design could provide more accurate and insightful features. The analysis revealed several 

interesting relationships between design elements and their impacts on occupants’ valence and 

arousal responses. For valence, rectilinear design elements showed a positive correlation (0.25), 

suggesting that straight lines and orderly designs are associated with positive valence. Glass 

elements also exhibited positive emotions. In contrast, sharp design elements had a negative 

correlation with valence (-0.39), implying that they are perceived negatively. Surprisingly, 

biophilic elements, typically associated with positive wellbeing outcomes, showed a negative 

correlation (-0.46) with valence in this dataset. For arousal, wood (0.18) and glass (0.22) 

elements were positively correlated, suggesting these materials are associated with higher arousal 

levels, enhancing alertness and engagement. Conversely, biophilic elements displayed a negative 

correlation (-0.32) with arousal, indicating a calming effect, aligning with the general 

understanding of biophilic design promoting relaxation. 

  



 

  

Fig.4.4: Ebow method      Fig.4.5: Cluster example 

Fig.4.6: PCA analysis of cluster example 

  



 

4.4 Key Findings and Their Implications 

The findings indicate that certain design elements have a consistent impact on occupants' 

emotional responses. Glass elements are positively correlated with both valence and arousal, 

making them versatile for creating environments that are both engaging and emotionally 

positive. This suggests that incorporating glass in interior designs can enhance occupants' overall 

emotional wellbeing. Rectilinear elements also contribute positively to valence, suggesting that 

clean, straight lines are aesthetically pleasing and contribute to a positive emotional state. The 

negative correlation of sharp design elements with valence highlights their potential to evoke 

negative emotions, suggesting that softer, less aggressive design choices may be preferable for 

promoting positive emotions. The consistent negative correlation of biophilic elements with 

arousal suggests their effectiveness in creating calming, low-arousal environments. However, the 

unexpected negative correlation with valence warrants further investigation to understand the 

underlying factors that may contribute to this outcome in the specific context of this dataset. 

Despite promising findings, several limitations should be acknowledged to guide future research. 

The lack of control over survey participants' demographics and professional backgrounds may 

have introduced biases. Future studies should ensure a more representative and balanced 

participant pool. 

5. Conclusion (600 words) 

This study provides a comprehensive analysis of the influence of interior design elements on 

occupants' emotional responses through the integration of qualitative and quantitative methods. 

By categorizing environments based on survey responses into seven classes—“Neutral,” 

“Relax,” “Negative,” “Bored,” “Flow,” “Positive,” and “Stress”—it was found that a significant 

portion of the environments were perceived as “Neutral.” The CNN model, despite achieving a 

high training accuracy of 99.43%, exhibited a lower validation accuracy of 53.33%, suggesting 

potential overfitting and highlighting the need for a more diverse training dataset. Regression 

analysis revealed the non-linear nature imposes a significant challenge for regression models to 

effectively learn the relationship between design elements and emotional responses. K-means 

clustering and PCA provided further insights, such as the positive impact of rectilinear and glass 

elements on valence and the calming effect of biophilic elements on arousal. However, the 

unexpected negative correlation of biophilic elements with valence suggests a need for further 

investigation. These findings have practical implications for architectural design. Glass and 

rectilinear elements were found to enhance emotional positivity and engagement, making them 

valuable for creating appealing and emotionally supportive environments. Conversely, sharp 

design elements should be used cautiously due to their potential to evoke negative emotions, and 

the application of biophilic elements requires a nuanced approach to balance their dual effects on 

valence and arousal. Several limitations were identified, including the need for a more 

representative participant pool and a larger, more diverse dataset to capture the complexity of 

interior environments. Advanced feature extraction techniques and more sophisticated model 

tuning and optimization could also enhance predictive performance.  

Overall, this study demonstrates the potential of mixed-methods research in understanding the 

impact of interior design on occupant wellbeing. The integration of CNN modeling, regression 

analysis, and clustering techniques provides a holistic view of how design features influence 

emotional responses. These insights can guide architects and designers in creating spaces that 



 

promote emotional wellbeing, ultimately contributing to healthier and more productive 

environments. The study's findings have significant potential to impact future design strategies, 

encouraging the development of environments that not only meet aesthetic and functional needs 

but also support the psychological and emotional health of their occupants. 

 6.      Acknowledgement  

This study was conducted under the auspices of the University of Washington's Applied Research 

Consortium (ARC) program, with invaluable support from our partnering firm, Mithun. We extend our 

heartfelt gratitude to Dr. Narjes Abbasabadi, Assistant Professor in the Department of Architecture at the 

University of Washington and head of the Sustainable Intelligence Lab, for her expert guidance and 

leadership of this research. Her extensive research in computation in the built environment has been 

instrumental in shaping this study. We also wish to acknowledge Jason Steiner and Katie Stege  for their 

unwavering support and expertise, who lead this computation design research at Mithun. Their 

contributions have been critical in driving the ARC research and development efforts. Their collective 

insights and encouragement have been vital to the success of this research. 

 

 

  



 

References 

Taylor, Frederick W. The Principles of Scientific Management. New York: Harper & Brothers, 

1911. 

Priyanka A. Abhang, Bharti W. Gawali, and Suresh C. Mehrotra. "Technological Basics 

of EEG Recording and Operation of Apparatus." In Introduction to EEG- and Speech-

Based Emotion Recognition, edited by Priyanka A. Abhang, Bharti W. Gawali, and 

Suresh C. Mehrotra, 19-50. Academic Press, 2016. https://doi.org/10.1016/B978-0-12-

804490-2.00002-6. 

Schmidt, Louis A. "Frontal brain electrical activity in shyness and sociability." *Psychological 

Science* 12, no. 4 (2001): 301-306. DOI:10.1111/1467-9280.00356. 

Posner, Jonathan, James A. Russell, and Bradley S. Peterson. "The circumplex model of affect: 

An integrative approach to affective neuroscience, cognitive development, and 

psychopathology." *Development and Psychopathology* 17, no. 3 (2005): 715-734. 

DOI:10.1017/S0954579405050340. 

Barrero, Jose Maria, Steven J. Davis, and Nicholas Bloom. “The Evolution of Working From 

Home.” Journal of Economic Perspectives 37, no. 4 (November 4, 2023): 1–6. 

https://doi.org/10.1257/jep.37.4.1. 

Myerson, Jeremy, Philip Tidd, Catherine Greene, Imogen Privett, Gail Ramster, Andrew 

Thomson, Ankita Dwivedi, Namrata Krishna, and Zsuzsa Nagy. Workplace & Wellbeing: 

Developing a Practical Framework for Workplace Design to Affect Employee Wellbeing. 

Gensler, Helen Hamlyn Centre for Design at the Royal College of Art, 2017. 

Aryanti, Ratih Devi, Erita Yuliasesti Diah Sari, and Herlina Siwi Widiana. "A Literature Review 

of Workplace Well-Being." In Proceedings of the 

International Conference on Community Development (ICCD 2020), 477:605-609. Atlantis 

Press, 2020. https://doi.org/10.2991/aebmr.k.200312.085. 

Byun, Kunjoon, Sara Aristizabal, Yihan Wu, Aidan F. Mullan, Jeremiah D. Carlin, Colin P. 

West, and Kevin A. Mazurek. "Investigating How Auditory and Visual Stimuli Promote 

Recovery After Stress With Potential Applications for Workplace Stress and Burnout: 

Protocol for a Randomized Trial." Frontiers in Psychology 13 (2022): 897241. 

https://doi.org/10.3389/fpsyg.2022.897241. 

Kim, Jeongmin, and Nayeon Kim. "Quantifying Emotions in Architectural Environments Using 

Biometrics." Applied Sciences 12, no. 9998 (2022): 1-15. 

Mostafavi, A. "Architecture, Biometrics, and Virtual Environments Triangulation: A Research 

Review." Architectural Science Review 65, no. 6 (2022): 504-521. 

https://doi.org/10.1257/jep.37.4.1
https://doi.org/10.1257/jep.37.4.1
https://doi.org/10.1257/jep.37.4.1
https://doi.org/10.3389/fpsyg.2022.897241
https://doi.org/10.3389/fpsyg.2022.897241
https://doi.org/10.3389/fpsyg.2022.897241


 

Persiani, Sandra G. L., Bilge Kobas, Sebastian Clark Koth, and Thomas Auer. "Biometric Data 

as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built 

Environment." Energies 14, no. 232 (2021): 1-40. 

Azzazy, Sameh, Amirhosein Ghaffarianhoseini, Ali GhaffarianHoseini, Nicola Naismith, and 

Zohreh Doborjeh. "A critical review on the impact of built environment on users’ 

measured brain activity." Architectural Science Review (2021). 

Costin, Alina, Alina Felicia Roman, and Raluca-Stefania Balica. “Remote Work Burnout, 

Professional Job Stress, and Employee Emotional Exhaustion during the COVID-19 

Pandemic.” Frontiers in Psychology 14 (June 1, 2023): 1193854. 

https://doi.org/10.3389/fpsyg.2023.1193854. 

Arza, A., J. M. Garzon, A. Hemando, J. Aguilo, and R. Bailon. “Towards an Objective 

Measurement of Emotional Stress: Preliminary Analysis Based on Heart Rate 

Variability.” In 2015 37th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), 3331–34. Milan: IEEE, 2015. 

https://doi.org/10.1109/EMBC.2015.7319105. 

Alzubaidi, Laith, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-

Shamma, J. Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie, and Laith Farhan. 

“Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, 

Future Directions.” Journal of Big Data 8, no. 1 (March 31, 2021): 53. 

https://doi.org/10.1186/s40537-021-00444-8. 

Ge, Fenfen, Minlan Yuan, Ying Li, and Wei Zhang. “Posttraumatic Stress Disorder and 

Alterations in Resting Heart Rate Variability: A Systematic Review and Meta-Analysis.” 

Psychiatry Investigation 17, no. 1 (January 25, 2020): 9–20. 

https://doi.org/10.30773/pi.2019.0112. 

Affanni, Antonio. “Wireless Sensors System for Stress Detection by Means of ECG and EDA 

Acquisition.” Sensors 20, no. 7 (April 4, 2020): 2026. https://doi.org/10.3390/s20072026. 

Medhat Assem, Hala, Laila Mohamed Khodeir, and Fatma Fathy. “Designing for Human 

Wellbeing: The Integration of Neuroarchitecture in Design – A Systematic Review.” Ain 

Shams Engineering Journal 14, no. 6 (June 2023): 102102. 

https://doi.org/10.1016/j.asej.2022.102102. 

Yin, Jie, Nastaran Arfaei, Piers MacNaughton, Paul J. Catalano, Joseph G. Allen, and John D. 

Spengler. “Effects of Biophilic Interventions in Office on Stress Reaction and Cognitive 

Function: A Randomized Crossover Study in Virtual Reality.” Indoor Air 29, no. 6 

(November 2019): 1028–39. https://doi.org/10.1111/ina.12593. 

Yin, Jie, Jing Yuan, Nastaran Arfaei, Paul J. Catalano, Joseph G. Allen, and John D. Spengler. 

“Effects of Biophilic Indoor Environment on Stress and Anxiety Recovery: A between-

Subjects Experiment in Virtual Reality.” Environment International 136 (March 2020): 

105427. https://doi.org/10.1016/j.envint.2019.105427. 

https://doi.org/10.3389/fpsyg.2023.1193854
https://doi.org/10.3389/fpsyg.2023.1193854
https://doi.org/10.3389/fpsyg.2023.1193854
https://doi.org/10.1109/EMBC.2015.7319105
https://doi.org/10.1109/EMBC.2015.7319105
https://doi.org/10.1109/EMBC.2015.7319105
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.30773/pi.2019.0112
https://doi.org/10.30773/pi.2019.0112
https://doi.org/10.30773/pi.2019.0112
https://doi.org/10.3390/s20072026
https://doi.org/10.3390/s20072026
https://doi.org/10.1016/j.asej.2022.102102
https://doi.org/10.1016/j.asej.2022.102102
https://doi.org/10.1016/j.asej.2022.102102
https://doi.org/10.1111/ina.12593
https://doi.org/10.1111/ina.12593
https://doi.org/10.1016/j.envint.2019.105427
https://doi.org/10.1016/j.envint.2019.105427


 

Yoon, So-Yeon, and Kevin Wise. “Reading Emotion of Color Environments: Computer 

Simulations with Self-Reports and Physiological Signals.” In Industrial Applications of 

Affective Engineering, edited by Junzo Watada, Hisao Shiizuka, Kun-Pyo Lee, Tsuyoshi 

Otani, and Chee-Peng Lim, 219–32. Cham: Springer International Publishing, 2014. 

https://doi.org/10.1007/978-3-319-04798-0_17. 

Cha, Seung Hyun, Shaojie Zhang, and Tae Wan Kim. “Effects of Interior Color Schemes on 

Emotion, Task Performance, and Heart Rate in Immersive Virtual Environments.” 

Journal of Interior Design 45, no. 4 (December 2020): 51–65. 

https://doi.org/10.1111/joid.12179. 

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning.” Nature 521, no. 7553 

(May 28, 2015): 436–44. https://doi.org/10.1038/nature14539. 

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with Deep 

Convolutional Neural Networks.” Communications of the ACM 60, no. 6 (May 24, 2017): 

84–90. https://doi.org/10.1145/3065386. 

Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale 

Image Recognition.” arXiv, April 10, 2015. http://arxiv.org/abs/1409.1556. 

Chalmers, Taryn, Blake Anthony Hickey, Phillip Newton, Chin-Teng Lin, David Sibbritt, Craig 

S. McLachlan, Roderick Clifton-Bligh, John Morley, and Sara Lal. “Stress Watch: The 

Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart 

Watch Wearables.” Sensors 22, no. 1 (December 27, 2021): 151. 

https://doi.org/10.3390/s22010151. 

Altini, Marco, and Daniel Plews. “What Is behind Changes in Resting Heart Rate and Heart Rate 

Variability? A Large-Scale Analysis of Longitudinal Measurements Acquired in Free-

Living.” Sensors 21, no. 23 (November 27, 2021): 7932. 

https://doi.org/10.3390/s21237932. 

Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 

“MobileNetV2: Inverted Residuals and Linear Bottlenecks.” arXiv, March 21, 2019. 

http://arxiv.org/abs/1801.04381. 

 

 

 

 

 

 

https://doi.org/10.1007/978-3-319-04798-0_17
https://doi.org/10.1007/978-3-319-04798-0_17
https://doi.org/10.1007/978-3-319-04798-0_17
https://doi.org/10.1111/joid.12179
https://doi.org/10.1111/joid.12179
https://doi.org/10.1111/joid.12179
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.3390/s22010151
https://doi.org/10.3390/s22010151
https://doi.org/10.3390/s22010151
https://doi.org/10.3390/s21237932
https://doi.org/10.3390/s21237932
https://doi.org/10.3390/s21237932
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381

