

Mass Timber Joinery Design for Digital Fabrication and De-constructability

Nathan Brown

TA7

Research Partners

Tomás Méndez Echenagucia

Assistant Professor, Architecture, University of Washington Tyler Sprague

Associate Professor, Architecture, University of Washington Josh Lohr

VDC Engineer, Turner Construction Company Sean Beatty

Renzo DiFuria

VDC Project Manager, Turner Construction Company Consultant, Turner Construction Company

Research Overview | Current Mass Timber Practice

Research Overview | Mass Timber Connections

Research Overview | Shearing Layers

Stuff | Temporary

Space Plan | 5 - 20 years

Services | 7 - 15 years

Skin | 15 - 30 years

Structure | 30 - 60 years

Site | Eternal

How Buildings Learn - Stewart Brand (1994)

Research Overview | Shearing Layers

Solution | Deconstructible Joint

Research Overview | Deconstructability

- Japanese temples are built to be deconstructed.
 - Each element is inspected for damage and replaced
 - Allows most members to last significantly longer

Research Questions

 How can Timber Joinery replace modern steel fasteners and what barriers are there to Timber Joinery in modern construction?

 How can digital computation and fabrication help resolve current issues with implementing timber joinery?

Research Goals

- Understand traditional timber joinery
- Digital fabrication tools for constructing traditional joints
- Digital Model for Post and Beam Timber Joinery
 - Tools to analyze stresses and fabrication issues
 - Deconstruction and Fabrication built into Design

Research Timeline

Research | Mechanical Properties

- Some research has shown that Finite Element Analysis of Joints are possible with modern computational techniques
- Focus on specific joint typologies or loading conditions.

Julieta Moradei et al. (2018)

Demi Fang (2018)

Research | Embodied Carbon

 Timber Joinery can provide carbon savings to modern mechanical attachments for similar structural integrity

Embodied Carbon of Timber Beam and Connections

embodied	carbon	savings	achieved	by	switching	connections	

	from MTC to Nuk	i	from SST to Nuki			
Span	Absolute values [kg CO ₂ e]	Percent savings	Absolute values [kg CO ₂ e]	Percent savings		
3.05 m (10 ft)	17.1 to 11.7	32%	19.4 to 11.7	40%		
4.58 m (15 ft)	37.3 to 26.4	29%	35.8 to 26.4	26%		
6.10 m (20 ft)	55.2 to 51.1	7%	74.6 to 51.1	31%		
7.63 m (25 ft)	91.2 to 79.1	13%	113 to 79.1	30%		

Demi Fang (2021)

Japanese Joinery Case Study

• Genjo Sanzo-in Picture Hall in the Yakushiji Complex

 Construct a model at different scales to better understand traditional joinery and how to apply modern fabrication techniques to them.

Fabrication of Case Study

- Fabricating traditional japanese joinery with digital fabrication techniques
 - 3-axis CNC mill
 - Laser Cutter
 - 3D printer

Case Study | Small Scale

Research Timeline

Joinery Catalogue

- Taxonomy of different families of joints
 - Compression, Tension, and Bending stress
 - Dynamic Lateral Loads
 - Finite Element Analysis
 - Comparing values in cost, embodied carbon, etc.

Joinery Catalogue | components

Name	Assumed Ends	Profile Axis	Push Pull Axis	Restricted Movement	Movement Axis	Millable	Comments	Through Cut	Typical Sides
Scarf	X/-X	Z (Rotated around Y axis	x	Slides along the plane Restricts: perp+ No Restrictions: perp-	Z+, X-,Y+, Y-	TRUE	Plane Joint: Similar to Lap Joints and Butt Joints but is at an angle	TRUE	SIDE
Miter	X/-Y	Y (Rotated around Z axis	Z	Slides along the plane Restricts: perp+ No Restrictions: perp-	Z+, Z-, X-, Y+	TRUE	Plane Joint: Similar to Scarf Joints but used on corners. Always bisects the two	TRUE	ТОР
Lap	X/-X	Z	x	Slides along the plane Restricts: perp+ No Restrictions: perp-	Z+, X-, Y+, Y-	TRUE	Plane Joint:	TRUE	SIDE
Butt	X/-X	Z	x	Slides along the plane Restricts: perp+ No Restrictions: perp-	Z+, Z-, X-, Y+, Y-	TRUE	Plane Joint:	TRUE	NONE
Mortise and Tenon	XY	Z	x	Slides perp to profile plane Restricts along profile	Y-, X+	TRUE	Tenon Joint:	FALSE	END
Stub Tenon ()	X/-X	Y :	x	Slides perp to profile plane Restricts along Profile Axis	X+, Z+, Z-	TRUE	Tenon Joint:	TRUE	ТОР
Stub Tenon ()	X/-X	Y	x	Slides perp to profile plane Restricts along Profile Axis Nonrestricted: + push pull axis	X+, Z+, Z-	TRUE	Tenon Joint:	TRUE	ТОР
Stub Tenon (L)	X/-X					FALSE	Tenon Joint:	FALSE	END
Stub Tenon (Half-Blind)	X/-X	Y	x	NR: + perp to profile plane R: along Profile Axis R: - perp to profile plane	X+, Z+, Z-	TRUE	Tenon Joint:	FALSE	END
Stub Tenon (+)	X/-X					FALSE	Tenon Joint:	FALSE	END

Computational Joint | Multi-Component Joint Tool

- Generation tool
- Capabilities of using any post and beam configuration
- Create and combine joint components

Generation | User Guided Generation

Machinability | Current Work

Opportunities to quantify and determine millability

• Overhang Analysis

• Mill Direction Analysis

Research Timeline

Future Research | Fabrication

Milling Automation

Future Research | Analysis

- Finite Element Analysis
- Anisotropic Materials
- Multi-part simulations

